Equivariant heat asymptotics on spaces of automorphic forms
نویسندگان
چکیده
منابع مشابه
The Dimension of Spaces of Automorphic Forms
1. The trace formula of Selberg reduces the problem of calculating the dimension of a space of automorphic forms, at least when there is a compact fundamental domain, to the evaluation of certain integrals. Some of these integrals have been evaluated by Selberg. An apparently different class of definite integrals has occurred in Harish-Chandra’s investigations of the representations of semi-sim...
متن کاملDimension of Spaces of Automorphic Forms
I will first formulate a problem in the theory of group representations and show how to solve it; then I will discuss the relation of this problem to the theory of automorphic forms. Since there is no point in striving for maximum generality, I start with a connected semisimple group G with finite center. An irreducible unitary representaiton π of G on the Hilbert space H is said to be square-i...
متن کاملIntroductory lectures on automorphic forms
1 Orbital integrals and the Harish-Chandra transform. This section is devoted to a rapid review of some of the basic analysis that is necessary in representation theory and the basic theory of automorphic forms. Even though the material below looks complicated it is just the tip of the iceberg. 1.1 Left invariant measures. Let X be a locally compact topological space with a countable basis for ...
متن کاملAutomorphic Forms
We apply a theorem of J. Lurie to produce cohomology theories associated to certain Shimura varieties of type U(1, n−1). These cohomology theories of topological automorphic forms (TAF ) are related to Shimura varieties in the same way that TMF is related to the moduli space of elliptic curves. We study the cohomology operations on these theories, and relate them to certain Hecke algebras. We c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2015
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/6439